

TIC246B, TIC246C, TIC246D, TIC246E, TIC246M, TIC246N, TIC246S

SILICON BIDIRECTIONAL TRIODE THYRISTOR

- High current triacs
- 16 A RMS
- 70 A Peak
- · Glass Passivated Wafer
- 200 V to 800 V Off-State Voltage
- Max I_{GT} of 50 mA (Quadrants 1-3)
- 125 A peak current
- Compliance to ROHS

DESCRIPTION

This device is a bidirectional triode thyristor (triac) which may be triggered from the off-state to the on-state by either polarity of gate signal with main Terminal 2 at either polarity.

ABSOLUTE MAXIMUM RATINGS

Symbol	Ratings		Value						Unit
		В	С	D	Е	М	S	N	
V _{DRM}	Repetitive peak off-state voltage (see Note1)	200	300	400	500	600	700	800	V
I _{T(RMS)}	Full-cycle RMS on-state current at (or below) 70°C case temperature (see note2)	16				А			
I _{TSM}	Peak on-state surge current full-sine-wave (see Note3)		125					Α	
I _{GM}	Peak gate current		± 1						Α
T _C	Operating case temperature range		-40 to +110						°C
T _{stg}	Storage temperature range		-40 to +125					°C	
TL	Lead temperature 1.6 mm from case for 10 seconds 230				°C				

Notes:

- 1. These values apply bidirectionally for any value of resistance between the gate and Main Terminal 1.
- 2. This value applies for 50-Hz full-sine-wave operation with resistive load. Above 70°C derate linearly to 110°C case temperature at the rate of 400 mA/°C.
- 3. This value applies for one 50-Hz full-sine-wave when the device is operating at (or below) the rated value of peak reverse voltage and on-state current. Surge may be repeated after the device has returned to original thermal equilibrium.

TIC246B, TIC246C, TIC246D, TIC246E, TIC246M, TIC246N, TIC246S

THERMAL CHARACTERISTICS

Symbol	Ratings	Value	Unit	
R _{∂JC}	Junction to case thermal resistance	≤ 1.9	°C/W	
R _{∂JA}	nction to free air thermal resistance ≤ 62.5		C/VV	

ELECTRICAL CHARACTERISTICS

TC=25°C unless otherwise noted

Symbol	Ratings	Test Condition(s)	Min	Тур	Mx	Unit	
I _{DRM}	Repetitive peak off- state current	V_D = Rated V_{DRM} , , I_G = 0, T_C = 110°C	-	-	±2	mA	
		V_{supply} = +12 V†, R_L = 10 Ω , $t_{p(g)}$ = > 20 μ s	-	12	50		
I _{GT}	Gate trigger current	V_{supply} = +12 V†, R_L = 10 Ω, $t_{p(g)}$ = > 20 μs	2 V†, R _L = 10 Ω, $t_{p(g)} = > 20 \mu s$ 19				
		V_{supply} = -12 V†, R_{L} = 10 Ω, $t_{\text{p(g)}}$ = > 20 μs	-	-16	-50	mA	
		V_{supply} = -12 V†, R _L = 10 Ω, $t_{p(g)}$ = > 20 μs	-	34	-		
		V_{supply} = +12 V†, R _L = 10 Ω, $t_{p(g)}$ = > 20 μs	-	0.8	2		
\mathbf{V}_{GT}	Gate trigger voltage	V_{supply} = +12 V†, R_L = 10 Ω, $t_{p(g)}$ = > 20 μs	_	-0.8	-2	V	
		V_{supply} = -12 V†, R_{L} = 10 Ω, $t_{\text{p(g)}}$ = > 20 μs	-	-0.8	-2		
		$V_{\text{supply}} = -12 \text{ V}_{\uparrow}, R_{L} = 10 \Omega, t_{p(g)} = > 20 \mu \text{s}$	-	0.9	2		
I _H	Holding current	V_{supply} = +12 V†, I_G = 0, initiating I_{TM} = 100 mA	-	22	40	mA	
		V_{supply} = -12 V†, I_{G} = 0, initiating I_{TM} = -100 mA	-	-22	-40	IIIA	
I _L	Latching current	V _{supply} = +12 V† (seeNote5)	_	_	80	mA	
		V _{supply} = -12 V† (seeNote5)	-	-	-80	ША	
V _{TM}	Peak on-state voltage	$I_{TM} = \pm 22.5 \text{ A}, I_G = 50 \text{ mA} \text{ (see Note4)}$	-	±1.4	±1.7	V	
dv/dt	Critical rate of rise of off-state voltage	V_{DRM} = Rated V_{DRM} , I_G = 0 T_C = 110°C	-	±400	-	V/µs	
di/dt	Critical rate of rise of off-state current	V_{DRM} = Rated V_{DRM} , I_{GT} = 50 mA, di_{G}/dt = 50mA/ μ s, T_{C} = 110°C	-	±100	-	A/µs	
dv/dt _©	Critical rise of communication voltage	V_{DRM} = Rated V_{DRM} , I_T = 1.4 $I_{T(RMS)}$ di/dt = 0.5 $I_{T(RMS)}$ /ms, T_C = 80°C	±1.2	±9	-	V/µs	

[†] All voltages are whit respect to Main Terminal 1.

Note 4: This parameters must be measured using pulse techniques, $t_W = \le 1$ ms, duty cycle ≤ 2 %, voltage-sensing contacts, separate from the courrent-carrying contacts are located within 3.2mm (1/8 inch) from de device body. Note 5: The triacs are triggered by a 15-V (open circuit amplitude) pulse supplied by a generator with the following characteristics: $R_G = 100\Omega$, $t_{tp(g)} = 20$ µs, $t_r = \le 15$ ns, $t_t = 1$ kHz.

TIC246B, TIC246C, TIC246D, TIC246E, TIC246M, TIC246N, **TIC246S**

MECHANICAL DATA CASE TO-220

Pin 2 is in electrical contact with the mounting base.

Pin 1 :	Main Terminal 1
Pin 2 :	Main Terminal 2
Pin 3 :	Gate