
Cyrix CPU
Detection Guide

Preliminary Revision 1.01

© 1997 Cyrix Corporation. All Rights Reserved.

Cyrix reserves the right to make changes in its products without notice in order to improve design or
performance characteristics.

The information in this publication is believed to be accurate at the time of publication, but Cyrix makes no
representations or warranties with respect to the accuracy or completeness of the contents of this publication
or the information contained herein, and reserves the right to make changes at any time, without notice. Cyrix
disclaims responsibility for any consequences resulting from the use of the information included in this
publication.

This publication neither states nor implies any representations or warranties of any kind, including but not
limited to, any implied warranty of merchantability or fitness for a particular purpose. Cyrix products are not
authorized for use as critical components in life support devices or systems without Cyrix's written approval.
Cyrix assumes no liability whatsoever for claims associated with the sale or use (including the use of
engineering samples) of Cyrix products except as provided in Cyrix's Terms and Conditions of Sale for such
product.

Trademarks

Cyrix, the Cyrix logo, and combinations thereof are trademarks of Cyrix Corporation.

5x86, 6x86, 6x86MX, MediaGX are registered trademarks of Cyrix Corporation.

MMX is a trademark of Intel Corporation.

Other product names used in this publication are for identification purposes only and may be
trademarks of their respective companies.

Revision History

REVISION RELEASE DATE DESCRIPTION OF CHANGES
1.00 09/30/97 First Release (preliminary).
1.01 10/02/97 Corrected the GXm and MediaGX values for DIR0

lookups

Cyrix CPU Detection

Introduction
This document provides an overview of the three possible methods for detecting a Cyrix
CPU. Once the correct method is identified (flowchart below), each detection method is
covered in detail. This includes: How to detect the Cyrix CPU; Which CPU is present;
What is the standard feature set; What are the Cyrix specific features.

The three CPU detection methods are:

1. CPUID - Standard Levels
This method provides the standard feature set (not vendor specific feature such as
Extended MMX) and requires a look-up table.

2. CPUID - Extended Levels
This is the preferred method of detection because it provides the ability to get the
CPU name without requiring a look-up table. It also provides information that may
be Cyrix specific. The CPUID - Extended Levels are only supported in the most
recent CPUs such as GXm.

3. The 5/2 Method
This method is used for older CPUs that do not support CPUID such as the 486DLC,
486SLC, 486DX, 486DX2 etc.

The flowchart below should be used to determine the correct detection method. After
identifying which method to use, refer to the correct section for further explanation.

CPUID Supported?
|

No -- Yes
| |

(Use 5/2 Method) Vendor =
 "CyrixInstead"?

 |
 Yes -------------------- No
 | |

 Extended (Other Vendor)
 CPUID Supported?

 |
 Yes ------------------------------------ No
 | |

 (Use Extended Method) (Use Standard Method)

CPUID - Standard Levels

Overview
The CPUID instruction is an application level (ring 3) instruction that provides information
about the system's processor and its feature set. The CPUID instruction provides multiple
functions, each containing different information about the processor. The CPUID
instruction is used to identify the vendor, family, and type of processor, as well as
information about any special features, like MMX™, that the processor may support. The
CPUID instruction may be executed at any privilege level.

Testing for CPUID Support
In order to avoid an invalid opcode exception on processors that do not support the CPUID
instruction, software must first verify that the processor supports the CPUID instruction.
The presence of the CPUID instruction is indicated by the ID bit (bit 21) in the EFLAGS
register. If this bit can be toggled, the CPUID instruction is present and enabled on the
processor. The following sample code will check for the presence of the CPUID instruction.
The following code should be executed after support for EFLAGS is verified, or at least a
80386/80486 is known to be present.

Sample Code:
pushfd ; get extended flags
pop eax ; store extended flags in eax
mov ebx, eax ; save current flags
xor eax, 200000h ; toggle bit 21
push eax ; put new flags on stack
popfd ; flags updated now in flags
pushfd ; get extended flags
pop eax ; store extended flags in eax
xor eax, ebx ; if bit 21 r/w then eax <> 0
je no_cpuid ; can't toggle id bit (21) no cpuid here

Standard CPUID Levels
Each of the standard CPUID levels (EAX = 0 and EAX = 1) contain the same information for
all vendors. The higher CPUID levels, including the extended levels, report information
that is specific to the Cyrix family of processors.

Table 1 summarizes the actual CPUID values currently returned by Cyrix processors.

Table 1. Actual CPUID Result Values:

Description 6x86 6x86 (4.x) MediaGX 6x86MX GXm

Standard Levels 1 1 1 1 1 2

Stepping xx xx xx 0 0

Model 2 2 4 0 4

Family 5 5 4 6 5

Type 0 0 0 0 0

Extended Levels 2 - - - - 8000 0005h

TLB Info 3 - - - - 00 00 70 01h

Cache Info 3 - - - - 00 00 00 80h

(EAX = 0h) - Vendor String and Max Standard CPUID Levels Supported
Standard function 0h (EAX = 0) of the CPUID instruction returns the maximum
standard CPUID levels supported by the current processor in EAX. EBX through
EDX return the vendor string of the processor. Please make note of the order of the
registers.

EAX Max Standard Levels
EBX Vendor ID String 1
ECX Vendor ID String 3
EDX Vendor ID String 2

1 EAX Value when CPUID (EAX= 0) Executed
2 Extended CPUID - EAX = 8000 0000h
3 EAX = 2; See Table 5 for Value Definitions

(EAX = 01h) - Processor Signature and Standard Feature Flags
Standard function 01h (EAX = 1) of the CPUID instruction returns the Processor
Type, Family, Model, and Stepping information of the current processor in EAX.
The Standard Feature Flags supported are returned in EDX. The other registers
upon return are currently reserved. The breakdown of the EAX register is as
follows:

EAX[3:0] Stepping ID
EAX[7:4] Model
EAX[11:8] Family
EAX[15:12] Type
EAX[31:16] Reserved
EBX Reserved
ECX Reserved
EDX Standard Feature Flags

(EAX = 02h) - TLB and L1 Cache Information
Standard function 02h (EAX = 02h) of the CPUID instruction returns information
that is specific to the Cyrix family of processors. Information about the TLB is
returned in EAX. Information about the L1 Cache is returned in EDX. This
information is to be looked up in a lookup table. (See Table 4)

EAX TLB Information
EBX Reserved
ECX Reserved
EDX L1 Cache Information

Standard Feature Flags
The standard feature flags are returned in the EDX register when the CPUID instruction is
called with standard function 01h (EAX = 1). Each flag refers to a specific feature and
indicates if that feature is present on the processor. Some of these features require enabling
or have protection control in CR4. Table 2 summarizes the standard feature flags.

Before using any of these features on the processor, the software should check the
corresponding feature flag. Attempting to execute an unavailable feature can cause
exceptions and unexpected behavior. For example, software must check bit 4 before
attempting to use the Time Stamp Counter instruction. See the glossary for a definition of
each feature.

Table 2 - Standard Feature Flags Values:

Feature Flag EDX
Bit

CR4
Bit

6x86* 6x86*
(4.x)

MediaGX* 6x86MX GXm

FPU 0 - X X X X X

V86 1 0,1 - - - - -

Debug Extension 2 3 - X - X -

4MB Page Size 3 4 - - - X -

Time Stamp Counter 4 2 - - - X X

RDMSR/WRMSR 5 8 - - - X X

PAE 6 5 - - - - -

MC Exception 7 6 - - - - -

CMPXCHG8B 8 - - X - X X

APIC on Chip 9 - - - - - -

Reserved 10-11 - - - - - -

MTRR 12 - - - - - -

Global Bit 13 7 - - - X -

Machine Check 14 - - - - - -

CMOV 15 - - - - X X

Reserved 16-22 - - - - - -

MMX 23 - - - - X X

Extended CPUID Levels

Overview
The extended CPUID levels are provided to simplify the detection routines used by
developers as well as provide information on processor specific extensions. Like the
CPUID instruction, the extended CPUID levels may be executed at any privilege level.

Testing for Extended CPUID Support
Before executing CPUID at the extended levels, software must first verify that the processor
supports the CPUID instruction. The presence of the CPUID instruction is indicated by the
ID bit (bit 21) in the EFLAGS register. If this bit can be toggled, the CPUID instruction is
present and enabled on the processor.

Sample Code:
pushfd ; get extended flags
pop eax ; store extended flags in eax
mov ebx, eax ; save current flags
xor eax, 200000h ; toggle bit 21
push eax ; put new flags on stack
popfd ; flags updated now in flags
pushfd ; get extended flags
pop eax ; store extended flags in eax
xor eax, ebx ; if bit 21 r/w then eax <> 0
je no_cpuid ; can't toggle id bit (21) no cpuid here

To verify that the processor supports the extended CPUID levels, software checks for
"CyrixInstead" in the vendor string returned by CPUID level 0, and a value greater than or
equal to 8000 0000h in the EAX register returned by CPUID level 8000 0000h.

Sample Code:
mov eax, 8000000 ; try extended cpuid level
cpuid ; execute cpuid instruction
cmp eax, 8000000 ; check if extended levels are supported
jl no_extended ; extended cpuid functions not available

Among the processors in the Cyrix family, different ones may execute different levels of
CPUID. Table 3 summarizes the CPUID levels currently implemented on Cyrix processors.

Table 3. Summary of CPUID Functions:

Standard
Functions

Extended
Functions

Description 5x86 &
Prior

6x86* Media
GX*

6x86MX GXm

0 - Standard Levels
Vendor String

- X X X X

1 - Processor Information
Standard Feature Flags

- X X X X

2 - TLB & Cache Information - - - - X

- 8000 0000h Extended Levels - - - - X

- 8000 0001h Extended Processor Info.
Extended Feature Flags

- - - - X

- 8000 0002h Processor Marketing Name - - - - X

- 8000 0003h Processor Marketing Name - - - - X

- 8000 0004h Processor Marketing Name - - - - X

- 8000 0005h TLB & Cache Information - - - - X

Extended CPUID Levels
Each of the extended CPUID levels reports information that is specific to the Cyrix family
of processors.

(EAX = 8000 0000h) - Maximum Extended CPUID Levels Supported
Extended function 8000 0000h (EAX = 8000 0000h) of the CPUID instruction returns
the maximum extended CPUID levels supported by the current processor in EAX.
The other registers upon return are currently reserved.

EAX Max Extended Levels
EBX Reserved
ECX Reserved
EDX Reserved

(EAX = 8000 0001h) - Processor Signature and Extended Feature Flags
Extended function 8000 0001h (EAX = 8000 0001h) of the CPUID instruction returns
the Processor Type, Family, Model, and Stepping information of the current

* CPUID is turned off by default on this CPU and most BIOS

processor in EAX. The Extended Feature Flags supported are returned in EDX. The
other registers upon return are currently reserved. The breakdown of the EAX
register is as follows:

EAX[3:0] Stepping ID
EAX[7:4] Model
EAX[11:8] Family
EAX[15:12] Processor Type
EAX[31:16] Reserved
EBX Reserved
ECX Reserved
EDX Extended Feature Flags

(EAX = 8000 0002h - 8000 0004h) - Official CPU Name
Extended functions 8000 0002h through 8000 0004h (EAX = 8000 0002h through EAX
= 8000 0004h) of the CPUID instruction returns an ASCII string containing the name
of the current processor. These functions eliminate the need to look up the
processor name in a lookup table. Software can simply call these functions to obtain
the name string. The string may be 48 ASCII characters long, and is returned in
little endian format. If the name is shorter than 48 characters long, the remaining
bytes will be filled with ASCII NUL character (00h).

8000 0002h 8000 0003h 8000 0004h
EAX CPU Name 1 EAX CPU Name 5 EAX CPU Name 9
EBX CPU Name 2 EBX CPU Name 6 EBX CPU Name 10
ECX CPU Name 3 ECX CPU Name 7 ECX CPU Name 11
EDX CPU Name 4 EDX CPU Name 8 EDX CPU Name 12

(EAX = 8000 0005h) - TLB and L1 Cache Information
Extended function 8000 0005h (EAX = 8000 0005h) of the CPUID instruction returns
information about the TLB and L1 Cache to be looked up in a lookup table.

EAX Reserved
EBX TLB Information
ECX L1 Cache Information
EDX Reserved

Extended Feature Flags
The extended feature flags are returned in the EDX register when the CPUID instruction is
called with extended function 8000 0001h (EAX = 8000 0001h). Each flag refers to a specific
feature and indicates if that feature is present on the processor. Some of these features
require enabling or have protection control in CR4. Table 4 summarizes the extended
feature flags. See the glossary for a definition of each feature.

Table 4 - Extended Feature Flags Values:
Feature Flag EDX

Bit
CR4 Bit CPUs Prior to

GXm
GXm

FPU 0 - - X

V86 1 0,1 - -

Debug Extension 2 3 - -

Page Size Extensions 3 4 - -

Time Stamp Counter 4 2 - X

Cyrix MSR 5 8 - X

PAE 6 5 - -

MC Exception 7 6 - -

CMPXCHG8B 8 - - X

APIC on Chip 9 - - -

SYSCALL/SYSRET 10 - - -

Reserved 11 - - -

MTRR 12 - - -

Global Bit 13 7 - -

Machine Check 14 - - -

CMOV 15 - - X

FPU CMOV 16 - - X

Reserved 17-22 -

MMX 23 X

Extended MMX 24 X

Table 5 - Cache and TLB Descriptor Lookup Table

Value Name Size Associative Comments
01h If the least-significant byte (byte 0) is set to 01h, this indicates that the CPUID instruction needs to be

executed only once with an input value of 2 to retrieve complete information about the processor's
caches and TLBs.

70h TLB 32 Entry 4 Way 4K-Byte Pages

80h Level 1 Cache 16K 4 Way 16 Bytes/Line

Cyrix CPU Detection - "The 5/2 Method"

Overview
Each of the CPU vendors has created a unique way of determining which CPU is in a user's
machine. A developer may detect if a Cyrix CPU is present by using a simple division
routine then checking the status of the Flags register. This method is only valid after
determining that the CPU does not support CPUID. Software that does not first check for
CPUID may report a Cyrix CPU when one is not present.

Once a Cyrix CPU is determined to be present, the software may use the "Cyrix Device ID
Registers" and a lookup table to determine which CPU is present.

Detecting a Cyrix CPU
A software check is required to determine if the CPU is an 80486 or above class processor,
since all Cyrix CPUs are 80486 and above class processors. If this check is not made, the
software may report a Cyrix CPU when one is not present. The following code is an
example of how to detect an 80486 and above class processor.

Sample Code:
pushfd ; save EFLAGS
pop eax ; get EFLAGS
mov ecx, eax ; temp storage EFLAGS
xor eax, 40000h ; change AC bit in EFLAGS
push eax ; put new EFLAGS value on stack
popfd ; replace current EFLAGS value
pushfd ; get EFLAGS
pop eax ; save new EFLAGS in EAX
cmp eax, ecx ; compare temp and new EFLAGS
jz is_not_80486 ; not a 486 or above class processor

The division routine is used after it has been determined that the processor is a 80486 or
above class processor. Detection of a Cyrix CPU is accomplished by checking the state of
the undefined flags following execution of the divide instruction that divides 5 by 2 (5÷2).
The undefined flags in a Cyrix processor remain unchanged following the divide operation.
Other vendor's processors will modify some of the undefined flags.

Sample Code:
xor ax, ax ; clear ax
sahf ; clear flags, bit 1 is always 1 in flags
mov ax, 5 ; move 5 into the dividend
mov bx, 2 ; move 2 into the divisor
div bl ; do an operation that does not change flags
lahf ; get flags
cmp ah, 2 ; check for change in flags
jne not_cyrix ; flags changed, not a Cyrix CPU

Determining which Cyrix CPU is present
After determining that a Cyrix processor exists, its Device ID Registers can be read to
identify its type. The Device ID Registers exist at register indexes FEh and FFh. Access to
these registers is achieved by writing the index of the register to I/O port 22h. I/O port 23h
is then used for data transfer. Each port 23h data transfer must be preceded by a port 22h-

register index selection, otherwise the second and later port 23h operations are directed off-
chip and produce external I/O cycles.

The following is a table describing the bit definitions of each Device ID Register:

DIR0 Bit Definitions
Bit Position Description
7-0 CPU Device Identification Number (read only)

DIR1 Bit Definitions
Bit Position Description
7-4 CPU Step Identification Number (read only)
3-0 CPU Revision Identification (read only)

The following is a table describing the base level DIR0 values for the different generations
of Cyrix CPUs. A more detailed table of each generation of Cyrix CPU is located in
Appendix A.

DIR1 Values Description
00h - 07h Cx486SLC/DLC/SRx/DRx
10h - 13h Cx486S
1Ah - 1Fh Cx486DX/DX2
28h - 2Fh 5x86
30h - 35h 6x86 / 6x86L
50h - 5Fh 6x86MX
40h - 4xh MediaGX
42h GXm

GLOSSARY:

Feature Flags Descriptions:
FPU A Floating-point unit is onboard the CPU.
V86 Virtual mode extensions are available.
Debug I/O Breakpoint debug extensions are supported.
Page Size 4-Mbyte pages are supported.
Time Stamp A time stamp counter is available, and the

RDTSC instruction is available.
MSRs Cyrix model-specific registers are available, and

the RDMSR and WRMSR instructions are
supported.

PAE Physical Address Extensions. (Need more info…)
MCExt Machine Check Exception is supported.
CMPXCHG8B Compare Exchange Eight Byte instruction is

supported.
APIC A local APIC unit is available.
MTRR Memory Type Range Register (Need more info…)
Global Paging Global paging extensions are available.
Machine Check Machine Check Arch. (Need more info…)
Cond. Move The conditional move instructions CMOV,

FCMOV, and FCOMI are supported.
MMX MMXTM instruction set is supported.
SYSCALL/RET SYSCALL and SYSRET instructions and

associated extensions are supported.
FPU CMOVs Floating-point conditional move instructions

FCMOV and FCOMI are supported.

Appendix A:

Tables of DIR values for each Cyrix Processor

Cx486SLC/DLC/SRx/DRx (M0.5)
DIR0 DIR1 Description

00h Stepping Cx486_SLC

01h Stepping Cx486_DLC

02h Stepping Cx486_SLC2

03h Stepping Cx486_DLC2

04h Stepping Cx486SRx (Retail Upgrade CPU)

05h Stepping Cx486DRx (Retail Upgrade CPU)

06h Stepping 2x Cx486SRx2 (Retail Upgrade CPU)

07h Stepping 2x Cx486DRx2 (Retail Upgrade CPU)

Cx486S (M0.6)
DIR0 DIR1 Description

10h Stepping Cx486S (B step)

11h Stepping Cx486S2 (B step)

12h Stepping Cx486Se (B step)

13h Stepping Cx486S2e (B step)

Cx486DX/DX2 (M0.7)
DIR0 DIR1 Description

1Ah Stepping Cx486DX

1Bh Stepping Cx486DX2

1Fh Stepping Cx486DX4

5x86 (M0.9)
DIR0 DIR1 Description

28h Stepping 1x Clock (Core/Bus)

2Ah Stepping 1x Clock (Core/Bus)

29h Stepping 2x Clock (Core/Bus)

2Bh Stepping 2x Clock (Core/Bus)

2Dh Stepping 3x Clock (Core/Bus)

2Fh Stepping 3x Clock (Core/Bus)

2Ch Stepping 4x Clock (Core/Bus)

2Eh Stepping 4x Clock (Core/Bus)

6x86 (M1)
DIR0 DIR1 Description

30h Stepping 1x Clock (Core/Bus)

31h Stepping 2x Clock (Core/Bus)

35h Stepping 3x Clock (Core/Bus)

34h Stepping 4x Clock (Core/Bus)

6x86L (M1)
DIR0 DIR1 Description

30h > 21h 1x Clock (Core/Bus) - Supports CMPEX8B, Debug Ext.

31h > 21h 2x Clock (Core/Bus) - Supports CMPEX8B, Debug Ext.

35h > 21h 3x Clock (Core/Bus) - Supports CMPEX8B, Debug Ext.

34h > 21h 4x Clock (Core/Bus) - Supports CMPEX8B, Debug Ext.

6x86MX (M2)
DIR0 DIR1 Description

50h Stepping 1x Clock (Core/Bus)

58h Stepping 1x Clock (Core/Bus)

51h Stepping 2x Clock (Core/Bus)

59h Stepping 2x Clock (Core/Bus)

52h Stepping 2.5x Clock (Core/Bus)

5Ah Stepping 2.5x Clock (Core/Bus)

53h Stepping 3x Clock (Core/Bus)

5Bh Stepping 3x Clock (Core/Bus)

54h Stepping 3.5x Clock (Core/Bus)

5Ch Stepping 3.5x Clock (Core/Bus)

55h Stepping 4x Clock (Core/Bus)

5Dh Stepping 4x Clock (Core/Bus)

56h Stepping 4.5x Clock (Core/Bus)

5Eh Stepping 4.5x Clock (Core/Bus)

57h Stepping 5x Clock (Core/Bus)

5Fh Stepping 5x Clock (Core/Bus)

MediaGX (Gx86)
DIR0 DIR1 Description

41h Stepping 3x Clock (Core/Bus)

45h Stepping 3x Clock (Core/Bus)

47h Stepping 3x Clock (Core/Bus)

44h Stepping 4x Clock (Core/Bus)

46h Stepping 4x Clock (Core/Bus)

 (GXm)
DIR0 DIR1 Description

40h Stepping 4x Clock (Core/Bus)

42h Stepping 4x Clock (Core/Bus)

47h Stepping 5x Clock (Core/Bus)

41h Stepping 6x Clock (Core/Bus)

43h Stepping 6x Clock (Core/Bus)

44h Stepping 7x Clock (Core/Bus)

46h Stepping 7x Clock (Core/Bus)

45h Stepping 8x Clock (Core/Bus)

